
A
c

F
a

b

a

A
R
R
A
A

K
L
(
L
L
T
S
F
F

1

p
n
p

t
p
t
fl
p
t
t
m
t
o
o
t
[

n
T

0
d

Journal of Hazardous Materials 169 (2009) 217–220

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journa l homepage: www.e lsev ier .com/ locate / jhazmat

QSPR model for estimation of lower flammability limit temperature of pure
ompounds based on molecular structure

arhad Gharagheizi a,b,∗

Department of Chemical Engineering, Faculty of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran
Department of Chemical Engineering, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran, Iran

r t i c l e i n f o

rticle history:
eceived 9 December 2008
eceived in revised form 15 March 2009
ccepted 18 March 2009
vailable online 27 March 2009

eywords:

a b s t r a c t

In this study, a quantitative structure–property relationship was presented to estimate lower flamma-
bility limit temperature (LFLT) of pure compounds. This relationship is a multi-linear equation and has
six parameters. These chemical structure-based parameters were selected from 1664 molecular-based
parameters by genetic algorithm multivariate linear regression (GA-MLR). Since 1171 compounds were
used to develop this equation, the model can be used to estimate the LFLT of a wide range of pure
compounds.

© 2009 Elsevier B.V. All rights reserved.
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. Introduction

To safe handling, transportation, and storage of flammable com-
ounds, information about flammability of these compounds is
eeded [1]. One of the most important parameters used to this
urpose is lower flammability limit temperature (LFLT) [2].

The lower flammability limit temperature (LFLT) or tempera-
ure limit of flammability or lower explosion point or lower flash
oint is the temperature related to 1.01325 bar of pressure, at which
he concentration of a saturated vapor/air mixture equals the lower
ammability limit. In other words, the LFLT is the minimum tem-
erature at which liquid or solid compounds evolve sufficient vapor
o form a flammable mixture with air under equilibrium condi-
ions. The LFLT is measured under ASTM Test E 1232. In this test

ethod, the LFLT is defined as the lowest temperature (corrected
o standard atmospheric pressure of 101 kPa) at which application

f an ignition source causes a homogenous mixture of a gaseous
xidizer and vapors in equilibrium with liquid (or solid) sample
o ignite and propagate a flame away from the ignition source
3].
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The LFLT of a pure compound can be calculated from its vapor
pressure curve and the lower flammability limit. Practically, LFLT is
the lowest temperature at which the mixtures of vapor or gas with
air, if ignited will just propagate flame.

The definition of the LFLT is like the definition of flash point and
in principle, the FP (The FP is defined as the temperature at which
it can form an ignitable mixture with air.) and LFLT should be the
same, but due to the differences in determination methods, the LFLT
is lower than the FP.

There is an important difference between these two properties
(LFLT and FP). The FP is reached when a flame propagates from
an ignition source such as external flame through the vapor–air
mixture but, LFLT is essentially independent of the ignition source
strength [1,2]. As a result, it can be concluded that the LFLT always
has lower value in comparison with the FP. This result has been
experimentally confirmed [2]. Therefore, attention to this result is
very important and it can be found that LFLT is more important
than FP in evaluation of safely operating an industrial processes.
In other words, operating at temperatures below the FP may not
be sufficient safety, but operating at temperatures below the LFLT
gives sufficient safety [2].
The LFLT is one of the important safety parameters used in design
safe operational conditions in those equipments such as vessels and
storage tanks which, the equilibrium conditions occur [3].

The performed literature survey showed that there is no
computational method to estimate or predict LFLT. Then the

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:fghara@ut.ac.ir
mailto:fghara@gmail.com
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stimation of LFLT of pure compounds is the subject of this
tudy.

One of the most widely used methods applied to relate
hysical and chemical properties to the chemical structure
f compounds is quantitative structure–property relationship
QSPR). In this methodology, the desired property is correlated
sing molecular-based parameters called “molecular descriptors”.
olecular descriptors are computed only from chemical structure

f a molecule using the known mathematical algorithms. Applica-
ion of this methodology to correlate various physical and chemical
roperties has been showed promising results [4–11]. Therefore in
his study, this methodology is used to develop a molecular-based

odel to predict LFLT of pure compounds.

. Materials and methods

.1. Data set

Evaluated databases such as DIPPR 801 database [12] are use-
ul tools for developing new property prediction models. DIPPR
01 is recommended by American Institute of Chemical Engineers
AIChE) for physical properties of pure compounds. In this study,
171 pure compounds were found in this database and their LFLT
ere extracted and used as main dataset. These compounds and

heir LFLT values are presented as supplementary materials.

.2. Determination of molecular descriptors

In this step, the molecular structures of all 1171 pure com-
ounds were drawn into Hyperchem software [13] and optimized
sing the MM+ molecular mechanics force field. Since the val-
es of some types of molecular descriptors are dependent to
onds lengths and bonds angles, the real values for these param-
ters are needed, therefore, the optimized chemical structures
re necessary to obtain true values for molecular descriptors.
hereafter, using these optimized molecular structures; molecular
escriptors were calculated by Dragon software [14]. Dragon soft-
are can calculate 1664 molecular descriptors for every molecule.
f course, these molecular descriptors have been calculated for

pproximately 234,000 pure compounds using Dragon software
nd are accessible from Milano chemometrics and QSAR research
roup web site (http://michem.disat.unimib.it/mole db). For more
nformation about the types of the molecular descriptors which
ragon can calculate, and the procedure of calculation of the
escriptors, refer to Dragon software user’s guide [14].

.3. GA-MLR calculations

Usually, in QSPR methodology, after computing molecular
escriptors, the problem is to find a linear equation that can predict
he desired property with the least number of variables as well as
ith the highest accuracy. In other words, the problem is to find a

ubset of variables (most statistically effective molecular descrip-

LFLT = 17.1766(±4.8632) + 213.3319(±8.6995)M
−7.9145(±0.3629)GGI1 + 38.5377(±1.420

ntraining = 937; ntest = 234; R2
training = 0.9459;

s = 15.613; a = −0.017; F = 8229.781;
RQK function parameters : �K = 0.075; �Q =
ors of LFLT) from all available variables (all molecular descriptors)
o that can predict LFLT, with minimum error in comparison with
he available data.

A generally accepted method for this problem is genetic algo-
ithm based multivariate linear regression (GA-MLR). In this
Materials 169 (2009) 217–220

method, genetic algorithm is used to select best subset variables
with respect to an objective function. Application of the genetic
algorithm for subset variable selection was presented by Leardi et
al. for the first time [15].

In this study, the GA-MLR technique presented by Leardi et al.
[15] with RQK objective function presented by Todeschini et al. [16]
was used to subset variable selection. This methodology has been
extensively presented in the previous works of the author and the
results are satisfactory [4–11].

Before performing GA-MLR technique, the data set must be
divided into two new collections. First one is allocated for train-
ing and second one is allocated for testing. By means of the training
set, the best model is found and then the predictive power of the
obtained model was checked by the test set as external dataset. In
this work, 80% of the database was used for training set and 20%
for test set (from 1171 compounds, 937 compounds are in the train-
ing set and 234 compounds are in the test set). The selection was
randomly done.

The inputs of our program are the pool of molecular descrip-
tors, the LFLT of pure compounds, and the number of molecular
descriptors which we want to enter into our final model.

To obtain the best multivariate linear equation, all molecular
descriptors must be introduced to the program and the minimum
number of possible variables must be tested at the starting point.
So running the program is started with one variable. After running
the program, we must obtain the best multivariate linear model.
In the next steps, we increase the number of desired variables to
two, three, four, and so on, and we must repeat all calculations for
them.

When we saw that increasing in the number of variables has no
considerable effect on the accuracy of the best-obtained model, the
calculations must be stopped, because the best multivariate linear
model has been obtained.

3. Results and discussion

By presented procedure, the best multivariate linear equation
was obtained. This multivariate linear model has six parameters.
This equation is:

.0667(±00.0676)CID + 23.4601(±0.7897)EEig02d
ROH + 20.692(±1.0474)nHDon
= 0.9448; Q 2

BOOT = 0.9443; Q 2
EXT = 0.9495;

00; RP = 0.001; RN = 0.000

(1)

where LFLT is in Kelvin unit.
The molecular descriptors and their physical meanings are pre-

sented in Table 1.
“Mv” is mean atomic van der Waals volume. This parameter is

a measure of the size of a molecule. When the size of a molecule
increases the LFLT of that molecule increases. In other words, the
flammability of a molecule decreases when its size increases. “CID”
is a molecular ID number. These types of molecular descriptors
are proposed to unequivocally identify a molecule by a single real
number. When this parameter increases, the LFLT increases, too.
“EEig02d” belongs to edge adjacency indices. It is a measure of
polarity of a molecule. When the polarity of molecule is increases
the “EEig02d” increases and therefore, the LFLT is increases. “GGI1”
is a topological charge index. These molecular descriptors are pro-
posed to evaluate the charge transfer between pairs of atoms,

and therefore the global charge transfer in a molecule. Increase in
this parameter in a molecule causes decrease in the LFLT of that
molecule. “nROH” and “nHDon” are related to the functional groups.
These descriptors are measures of special types of interactions such
as hydrogen bonds and other related interactions. Existence of these

http://michem.disat.unimib.it/mole_db
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Table 1
The six molecular descriptors entered into the best-obtained multi-linear equation (Eq. (1)).

ID Molecular descriptor Type Definition

1 Mv Constitutional descriptors Mean atomic van der Waals volume (scaled on carbon atom)
2 CID Walk and path counts Randic I.D. number
3
4
5
6
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dicted LFLT in comparison to the DIPPR 801 data are presented as
supplementary materials. Also the values of the descriptors and
status of all of the pure compounds (training set or test set) are
presented as supplementary materials.
EEig02d Edge adjacency indices
GGI1 Topological charge indices
nROH Functional group counts.
nHDon Eigenvalue-based index

ypes of interactions causes to increase stability of a molecule and
herefore increase in the LFLT of that molecule [16].

ntrainiing and ntest are the number of compounds of the training
et and the test set, respectively. For more checking validity of the
odel, bootstrap technique, y-scrambling, and external validation

echniques were used [16]. The bootstrapping was repeated 5000
imes. Also y-scrambling was repeated 300 times. As can be seen
he difference between, Q 2

LOO, Q 2
BOOT, Q 2

EXT and R2
training show that

he obtained model is a good model and has good predictive power
16]. Also the intercept value of the y-scrambling technique has
ow value (a = −0.017) that reveals the validity of the model (The y-
crambling, bootstrapping, and external validation techniques have
een extensively presented by Todeschini et al. [16].).

All of the validation techniques show that the obtained model
s a valid model and can be used to predict the LFLT of pure com-
ounds.

To evaluate the applicability domain (AD) of a QSPR model,
pplication of a plot of standardized cross-validated residuals
ersus leverage (Hat diagonal) values was suggested by Gramat-
ca [17]. This plot is called William plot. This method has been
xplained in details in Ref. [17]. This simple plot helps to identify
oth the response outliers and structurally influential chemicals

n the model. As stated by Gramatica, those compounds with
ross-validated standardized residuals grater than three standard
eviation units are response outliers. Also, those compounds with
at values grater than a critical Hat value are influential compounds

n the model. Gramatica used 2.5 times of average of Hat values for
his critical Hat value.

The William plot for Eq. (1) is presented in Fig. 1. Based on the
xplanations presented by Gramatica, in Fig. 1, compound 58 (1,4-
enzendiamine) is truly predicted by the model but because high

everage value, as defined by the Hat vertical line it is outside of

he AD. As can be found there is no outlier in the test set used
n this study. Prediction of all other 10 compounds belong to test
et and lie between 2 vertical lines and has Hat value greater than
ritical Hat value are reliable because in this area there are three
ompounds belong to the training set. Therefore, these three com-

Fig. 1. The William plot for the Eq. (1) as stated by Gramatica [17].
Eigenvalue 02 from edge adjacency matrix weighted by dipole moment
Topological charge index of order 1
Number of hydroxyl groups
Number of donor atoms for H-bonds (N and O)

pounds are influential in model development. Also, compound 827
(furan) is wrongly predicted but it belongs to the AD of the model.
This erroneous prediction could probably be attributed to wrong
experimental data rather than to molecular structure.

The predicted values of LFLT using Eq. (1) in comparison with
the DIPPR 801 data are presented in Fig. 2. The values of the pre-
Fig. 2. Comparison between the predicted LFLT by Eq. (1) and DIPPR 801 data.
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Table 2
Statistical parameters of the obtained model.

Statistical parameter Value

Training set
R2 0.9459
Average absolute deviation 3.98%
Standard deviation error 15.554
Root mean square error 15.613
n 937

Test set
R2 0.9527
Average absolute deviation 3.91%
Standard deviation error 15.174
Root mean square error 15.406
n 234

Training set + test set
R2 0.9468
Average absolute deviation 3.96%
Standard deviation error 15.565
Root mean square error 15.611
n 1171
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ig. 3. Percent error of predicted LFLT by Eq. (1) over all of 1171 pure compounds
sed in this study.

The results obtained by model are presented in Table 2. These
esults show that the squared correlation coefficient, average abso-
ute deviation, standard deviation error, and root mean square error
f the model over the training set and the test set and the main data
et are, respectively, 0.9459, 0.9527, 0.9468, 3.98%, 3.91%, 3.96%,
5.554, 15.174, 15.565, 15.613, 15.406, and 15.611.

. Conclusion

In this study a simple molecular-based model was presented
o predict lower flammability limit temperature (LFLT) of pure
ompounds. Also, validity and predictive power of the model was

hecked by several techniques. As a result, obtained model has
redictive power and can be used to predict the LFLT of pure com-
ounds. The squared correlation coefficient and root mean squares
f error obtained by this equation over 1171 pure compounds are
.9468 and 15.61 K. Also, the maximum absolute deviation obtained

[

[

Materials 169 (2009) 217–220

by the model is equal to 17.9% and, it is related to furan. Also the
average absolute error of the model over all 1171 pure compounds
is equal to 3.96%. Also, the percentage error obtained by Eq. (1) is
schematically shown in the Fig. 3.

Since the model has been obtained using 1171 pure compounds
which belong to diverse chemical groups, it can be used to predict
the LFLT of every regular compound with some limitations. These
1171 pure compounds cover many families of compounds there-
fore the model has a wide range of applicability but, application
of the model is restricted to those compounds similar to the com-
pounds used to develop this model. Application of the model to
those compounds which is completely different from compounds
used to develop the model is not recommended.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jhazmat.2009.03.083.
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